Crime prevention strategies based on early intervention depend on accurate risk assessment instruments for identifying high risk youth. It is important in this context that the instruments be convenient to administer, which means, in particular, that they must be reasonably brief; adaptive screening tests are useful for this purpose. Although item response theory (IRT) bears a long and rich history in producing reliable adaptive tests, adaptive tests constructed using classification and regression trees are becoming a popular alternative to the traditional IRT approach for item selection. On the upside, unlike IRT, tree-based questionnaires require no real-time parameter estimation during administration. On the downside, while item response theory provides robust criteria for terminating the exam, the stopping criterion for a tree-based adaptive test (the maximum tree depth) is unclear. We present a Bayesian decision theory approach for characterizing the trade-offs of administering tree-based questionnaires of different lengths. This formalism involves specifying 1) a utility function measuring the goodness of the assessment; 2) a target population over which this utility should be maximized; 3) an action space comprised of different-length assessments, populated via a tree-fitting algorithm. Using this framework, we provide uncertainty estimates for the trade-offs of shortening the exam, allowing practitioners to determine an optimal exam length in a principled way. The method is demonstrated through an application to youth delinquency risk assessment in Honduras.
翻译:以早期干预为基础的预防犯罪战略取决于准确的风险评估工具,以识别高风险青年。在这方面,重要的是,这些工具要便于管理,特别是意味着它们必须合理简短;适应性筛选测试对此有用。虽然项目反应理论(IRT)在制作可靠的适应性测试方面有着长期和丰富的历史,但使用分类和回归树进行的适应性测试正在成为传统的独立审查方法选择项目的一种受欢迎的替代方法。在反向方面,与独立审查小组不同,基于树木的调查表在管理期间不需要实时参数估计。在下行方面,项目反应理论为终止考试提供了强有力的标准,但基于树的适应性测试(最大树深度)的停止标准尚不明确。我们提出了一个巴伊斯决定性理论,用以说明管理不同长度的基于树木的调查问卷的权衡。这种形式主义涉及具体规定:(1) 衡量评估的好坏的效用功能;(2) 这一效用应当最大化的目标人口;(3) 行动空间,由不同程度的评估组成,通过树木调整算法组成。使用这一框架,我们为在使用最短度的青年从业者检验方法后确定一个经过最精确的检验的方法。