Smart home IoT systems and devices are susceptible to attacks and malfunctions. As a result, users' concerns about their security and safety issues arise along with the prevalence of smart home deployments. In a smart home, various anomalies (such as fire or flooding) could happen, due to cyber attacks, device malfunctions, or human mistakes. These concerns motivate researchers to propose various anomaly detection approaches. Existing works on smart home anomaly detection focus on checking the sequence of IoT devices' events but leave out the temporal information of events. This limitation prevents them to detect anomalies that cause delay rather than missing/injecting events. To fill this gap, in this paper, we propose a novel anomaly detection method that takes the inter-event intervals into consideration. We propose an innovative metric to quantify the temporal similarity between two event sequences. We design a mechanism to learn the temporal patterns of event sequences of common daily activities. Delay-caused anomalies are detected by comparing the sequence with the learned patterns. We collect device events from a real-world testbed for training and testing. The experiment results show that our proposed method achieves accuracies of 93%, 88%, 89% for three daily activities.
翻译:智能家庭 IoT 系统和设备很容易受到攻击和故障。 因此, 用户对自身安保和安全问题的担忧会随着智能家庭部署的普及而产生。 在智能家庭, 各种异常( 如火灾或洪水)可能发生, 原因是网络袭击、 装置故障或人为错误。 这些关注促使研究人员提出各种异常探测方法。 智能家庭异常探测的现有工作侧重于检查IoT 设备事件的序列, 但却忽略了事件的时间信息。 这一限制使他们无法发现造成延误而不是失踪/ 发射事件的异常现象。 为了填补这一空白, 我们在本文件中提出了一个新的异常检测方法, 以考虑到事件间间隔。 我们提出了一个创新的衡量标准, 以量化两个事件序列之间的时间相似性。 我们设计了一个机制, 学习常见日常活动时间序列的时间模式。 通过将序列与所学模式进行比较, 检测出由延迟引起的异常。 我们从真实世界测试的培训和测试中收集了设备事件。 实验结果显示, 我们提出的方法达到了93%、 88 % 、 89 % 的日常活动实现了93% 。