Supervised learning by extreme learning machines resp. neural networks with random weights is studied under a non-stationary spatial-temporal sampling design which especially addresses settings where an autonomous object moving in a non-stationary spatial environment collects and analyzes data. The stochastic model especially allows for spatial heterogeneity and weak dependence. As efficient and computationally cheap learning methods (unconstrained) least squares, ridge regression and $\ell_s$-penalized least squares (including the LASSO) are studied. Consistency and asymptotic normality of the least squares and ridge regression estimates as well as corresponding consistency results for the $\ell_s$-penalty are shown under weak conditions. The resuts also cover bounds for the sample squared predicition error.


翻译:在非静止空间时空抽样设计下,对随机重量的神经网络进行了研究,特别针对在非静止空间环境中移动的自主物体收集和分析数据的设置。这种随机模型特别允许空间异质性和依赖性弱。作为高效和计算成本低廉的学习方法(不受限制的)最小方块、山脊回归和以美元计酬的最低方块(包括LASSO),还研究了最小方块和山脊回归估计的恒定性和失常性,以及美元/ell_s$-penal 的相应一致性结果,在薄弱的条件下展示。这些Resut也覆盖了样本方形前置误差的界限。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员