This paper looks at solving collaborative planning problems formalized as Decentralized POMDPs (Dec-POMDPs) by searching for Nash equilibria, i.e., situations where each agent's policy is a best response to the other agents' (fixed) policies. While the Joint Equilibrium-based Search for Policies (JESP) algorithm does this in the finite-horizon setting relying on policy trees, we propose here to adapt it to infinite-horizon Dec-POMDPs by using finite state controller (FSC) policy representations. In this article, we (1) explain how to turn a Dec-POMDP with $N-1$ fixed FSCs into an infinite-horizon POMDP whose solution is an $N^\text{th}$ agent best response; (2) propose a JESP variant, called \infJESP, using this to solve infinite-horizon Dec-POMDPs; (3) introduce heuristic initializations for JESP aiming at leading to good solutions; and (4) conduct experiments on state-of-the-art benchmark problems to evaluate our approach.


翻译:本文探讨通过寻找纳什平衡(即每个代理人的政策是对其他代理人(固定)政策的最佳反应),解决作为分散式POMDP(Dec-POMDPs)正式化的合作规划问题。尽管基于联合平衡的搜索政策(JESP)算法在依赖政策树的有限视距设置中这样做,我们在此建议利用有限的州控制员(FSC)的政策说明,将其调整为无限偏差的Dec-POMDPs。在本条中,我们(1)解释如何将一个以1美元固定FSCs为单位的Dec-POMDP转换成一个以1美元固定FSCs为单位的无限偏差式POMDP,其解决办法是最佳反应;(2) 提出一个称为\infJESP的JESP变方,利用它来解决无限偏差Dec-POMDPs;(3)为JESP引入旨在找到良好解决办法的超度初始初始化初始化概念;以及(4)对状态基准问题进行实验,以评价我们的方法。

0
下载
关闭预览

相关内容

数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
110+阅读 · 2020年6月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【综述】多智能体强化学习算法理论研究
深度强化学习实验室
14+阅读 · 2020年9月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Arxiv
0+阅读 · 2021年12月8日
The StarCraft Multi-Agent Challenge
Arxiv
3+阅读 · 2019年2月11日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
【综述】多智能体强化学习算法理论研究
深度强化学习实验室
14+阅读 · 2020年9月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员