Existing face restoration models have relied on general assessment metrics that do not consider the characteristics of facial regions. Recent works have therefore assessed their methods using human studies, which is not scalable and involves significant effort. This paper proposes a novel face-centric metric based on an adversarial framework where a generator simulates face restoration and a discriminator assesses image quality. Specifically, our per-pixel discriminator enables interpretable evaluation that cannot be provided by traditional metrics. Moreover, our metric emphasizes facial primary regions considering that even minor changes to the eyes, nose, and mouth significantly affect human cognition. Our face-oriented metric consistently surpasses existing general or facial image quality assessment metrics by impressive margins. We demonstrate the generalizability of the proposed strategy in various architectural designs and challenging scenarios. Interestingly, we find that our IFQA can lead to performance improvement as an objective function.
翻译:现有面部恢复模型依靠的是不考虑面部区域特征的一般评估指标,因此,最近的工作评估了使用人类研究的方法,这种研究是无法伸缩的,涉及大量努力。本文件提出基于对抗性框架的新颖的面部中心计量标准,在对抗性框架的基础上,生成器模拟面部恢复,而歧视者评估图像质量。具体地说,我们的每个像素歧视者能够进行传统指标无法提供的可解释的评价。此外,我们的面部主要区域也强调,即使眼部、鼻子和嘴部的微小变化也会对人类认知产生显著影响。我们面向面部的计量标准始终超过现有的一般或面部图像质量评估标准。我们展示了拟议战略在各种建筑设计和富有挑战性的设想中的一般性。有趣的是,我们发现我们的IFQA作为客观功能可以导致业绩的改善。