Documentation of epileptic seizures plays an essential role in planning medical therapy. Solutions for automated epileptic seizure detection can help improve the current problem of incomplete and erroneous manual documentation of epileptic seizures. In recent years, a number of wearable sensors have been tested for this purpose. However, detecting seizures with subtle symptoms remains difficult and current solutions tend to have a high false alarm rate. Seizures can also affect the patient's arterial blood pressure, which has not yet been studied for detection with sensors. The pulse transit time (PTT) provides a noninvasive estimate of arterial blood pressure. It can be obtained by using to two sensors, which are measuring the time differences between arrivals of the pulse waves. Due to separated time chips a clock drift emerges, which is strongly influencing the PTT. In this work, we present an algorithm which responds to alterations in the PTT, considering the clock drift and enabling the noninvasive monitoring of blood pressure alterations using separated sensors. Furthermore we investigated whether seizures can be detected using the PTT. Our results indicate that using the algorithm, it is possible to detect seizures with a Random Forest. Using the PTT along with other signals in a multimodal approach, the detection of seizures with subtle symptoms could thereby be improved.


翻译:癫痫发作的文献记录在规划医疗治疗方面起着关键作用。自动癫痫发作检测的解决方案可以帮助改善目前有关癫痫发作的人工文件不完整和错误的问题。近年来,已经为此对一些可磨损的传感器进行了测试。然而,用微妙的症状检测缉获仍然困难,目前的解决办法往往具有很高的假警报率。缉获还可能影响病人的动脉血压,而还没有用传感器对动脉血压进行检测研究。脉冲中转时间(PTT)提供了动脉血压的非侵入性估计。通过使用两个传感器,可以测量脉冲波到达的时间差异。由于时间芯片分离,一个时钟流出现,对PTT产生强烈的影响。在这项工作中,我们提出一种算法,对PTT的改变作出反应,考虑到时钟流,并能够使用分离的传感器对血液压力变化进行非侵入性监测。此外,我们还调查了能否用PTTT检测到缉获。我们的结果表明,使用算法可以用随机森林检测缉获的情况。使用这个算法,可以用随机森林探测出缉获的缉获量。通过移动式的测算方法,从而用微调的信号探测。利用微调的信号与其他信号,使用微调的测得。通过采用微调的测得方法,用微调的测取方法,用微的测得的测得。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
5+阅读 · 2018年10月4日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员