Malignant melanoma is a common skin cancer that is mostly curable before metastasis -when growths spawn in organs away from the original site. Melanoma is the most dangerous type of skin cancer if left untreated due to the high risk of metastasis. This paper presents Melatect, a machine learning (ML) model embedded in an iOS app that identifies potential malignant melanoma. Melatect accurately classifies lesions as malignant or benign over 96.6% of the time with no apparent bias or overfitting. Using the Melatect app, users have the ability to take pictures of skin lesions (moles) and subsequently receive a mole classification. The Melatect app provides a convenient way to get free advice on lesions and track these lesions over time. A recursive computer image analysis algorithm and modified MLOps pipeline was developed to create a model that performs at a higher accuracy than existing models. Our training dataset included 18,400 images of benign and malignant lesions, including 18,000 from the International Skin Imaging Collaboration (ISIC) archive, as well as 400 images gathered from local dermatologists; these images were augmented using DeepAugment, an AutoML tool, to 54,054 images.


翻译:皮肤瘤是一种常见的皮肤癌,在转移前大部分是可以治愈的,在发酵前,这种肿瘤在发酵前是一种常见的皮肤癌 -- -- 生长在原发病地外的器官中产卵。如果由于发酵风险很高而得不到治疗,皮肤瘤是最危险的皮肤癌类型。本文展示了Melatect(Melatect),这是嵌入iOS应用软件的机器学习模型Melatect(Melatect),该应用软件可以识别潜在的恶性血瘤。Melatect准确地将96.6%以上的恶性或良性病分解,没有明显的偏差或过度适应。使用Melatect 应用程序,用户能够拍摄皮肤损伤(moles)的图片,随后接受内脏分类。Melatect 应用程序为免费了解损伤建议和跟踪这些损伤提供了方便的途径。 一种循环计算机图像分析算法和经修改的MLOPs管道,可以创建出一种比现有模型更精确的模型。 我们的培训数据集包括18,400,400张良性和恶性损伤的图像,包括国际皮肤成像成像协作(IS)档案中的18,包括18,8000张,以及从当地皮肤成像仪中收集的400张,544的图像。这些图像是用AlyMLML图。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
22+阅读 · 2019年11月24日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
q-Space Novelty Detection with Variational Autoencoders
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
22+阅读 · 2019年11月24日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
q-Space Novelty Detection with Variational Autoencoders
Arxiv
5+阅读 · 2018年1月14日
Top
微信扫码咨询专知VIP会员