Adversarial attacks on Graph Neural Networks (GNNs) reveal their security vulnerabilities, limiting their adoption in safety-critical applications. However, existing attack strategies rely on the knowledge of either the GNN model being used or the predictive task being attacked. Is this knowledge necessary? For example, a graph may be used for multiple downstream tasks unknown to a practical attacker. It is thus important to test the vulnerability of GNNs to adversarial perturbations in a model and task agnostic setting. In this work, we study this problem and show that GNNs remain vulnerable even when the downstream task and model are unknown. The proposed algorithm, TANDIS (Targeted Attack via Neighborhood DIStortion) shows that distortion of node neighborhoods is effective in drastically compromising prediction performance. Although neighborhood distortion is an NP-hard problem, TANDIS designs an effective heuristic through a novel combination of Graph Isomorphism Network with deep Q-learning. Extensive experiments on real datasets and state-of-the-art models show that, on average, TANDIS is up to 50% more effective than state-of-the-art techniques, while being more than 1000 times faster.


翻译:对图形神经网络(GNNs)的Aversarial攻击暴露了它们的安全弱点,限制了它们在安全关键应用中的采用。然而,现有的攻击战略依赖于对正在使用的GNN模型或正在攻击的预测任务的知识。例如,这种知识是否必要?例如,一个图表可用于实际攻击者所不知道的多个下游任务。因此,必须测试GNNs在模型和任务定点设置中易受对抗性干扰的脆弱性。在这项工作中,我们研究这一问题,并表明即使在下游任务和模型未知时,GNNNs仍然脆弱。拟议的算法,TANDIS(通过邻里站分散点进行目标攻击)显示,扭曲节点街区对大大损害预测性能是有效的。尽管邻里扭曲是一个NP硬的问题,但TANDIS设计了一种有效的超音量理论,通过一种新型的、有深度学习的图形形态网络的新型组合。关于真实数据集和状态模型的广泛实验显示,平均而言,TANDIS(通过邻居地攻击)将比州一级技术更快的50%。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年7月20日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关论文
Arxiv
13+阅读 · 2021年7月20日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
10+阅读 · 2018年3月23日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员