Reinforcement learning (RL) is typically concerned with estimating single-step policies or single-step models, leveraging the Markov property to factorize the problem in time. However, we can also view RL as a sequence modeling problem, with the goal being to predict a sequence of actions that leads to a sequence of high rewards. Viewed in this way, it is tempting to consider whether powerful, high-capacity sequence prediction models that work well in other domains, such as natural-language processing, can also provide simple and effective solutions to the RL problem. To this end, we explore how RL can be reframed as "one big sequence modeling" problem, using state-of-the-art Transformer architectures to model distributions over sequences of states, actions, and rewards. Addressing RL as a sequence modeling problem significantly simplifies a range of design decisions: we no longer require separate behavior policy constraints, as is common in prior work on offline model-free RL, and we no longer require ensembles or other epistemic uncertainty estimators, as is common in prior work on model-based RL. All of these roles are filled by the same Transformer sequence model. In our experiments, we demonstrate the flexibility of this approach across long-horizon dynamics prediction, imitation learning, goal-conditioned RL, and offline RL.


翻译:强化学习( RL) 通常涉及估算单步政策或单步模式, 利用 Markov 属性来将问题及时化。 但是, 我们还可以将 RL 视为一个序列建模问题, 目标是预测一系列导致一系列高回报序列的行动。 从这个角度来看, 需要考虑在其它领域( 如自然语言处理) 行之有效的强大、 高容量序列预测模型是否也能为 RL 问题提供简单有效的解决方案。 为此, 我们探索如何将 RL 重新设定为“ 一大序列建模” 问题, 使用最先进的变换器结构来模拟国家、 行动和奖励序列的分布。 解决 RL 的排序问题, 大大简化了一系列设计决定: 我们不再需要单独的行为政策限制, 以往关于无主模式RL 的工作通常如此, 我们不再需要组合或其他缩略图的不确定性估测计, 正如以前关于模型的RL 模型的模型模型模拟一样, 整个RL 的模型 的模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 和 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 模型 的 模型 的 的 的 的 的 的 的 模型 的 模型 模型 模型 的 的 的 的 的 的 的 的 的 模型 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
商业数据分析,39页ppt
专知会员服务
157+阅读 · 2020年6月2日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
144+阅读 · 2019年10月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月20日
Arxiv
14+阅读 · 2020年12月17日
Sparse Sequence-to-Sequence Models
Arxiv
5+阅读 · 2019年5月14日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
4+阅读 · 2017年7月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年9月20日
Arxiv
14+阅读 · 2020年12月17日
Sparse Sequence-to-Sequence Models
Arxiv
5+阅读 · 2019年5月14日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
4+阅读 · 2017年7月25日
Top
微信扫码咨询专知VIP会员