We present an algorithm for decomposing low rank tensors of any symmetry type, from fully asymmetric to fully symmetric. It generalizes the recent subspace power method from symmetric tensors to all tensors. The algorithm transforms an input tensor into a tensor with orthonormal slices. We show that for tensors with orthonormal slices and low rank, the summands of their decomposition are in one-to-one correspondence with the partially symmetric singular vector tuples (pSVTs) with singular value one. We use this to show correctness of the algorithm. We introduce a shifted power method for computing pSVTs and establish its global convergence. Numerical experiments demonstrate that our decomposition algorithm achieves higher accuracy and faster runtime than existing methods.
翻译:本文提出了一种适用于任意对称类型(从完全非对称到完全对称)的低秩张量分解算法。该算法将近期针对对称张量的子空间幂法推广至所有张量类型。算法将输入张量转化为具有正交切片结构的张量。我们证明,对于具有正交切片且低秩的张量,其分解项与奇异值为1的部分对称奇异向量元组存在一一对应关系,并据此论证了算法的正确性。我们引入了一种计算部分对称奇异向量元组的平移幂法,并证明了其全局收敛性。数值实验表明,与现有方法相比,本分解算法在精度和运行速度方面均具有更优表现。