Our goal is to recover time-delayed latent causal variables and identify their relations from measured temporal data. Estimating causally-related latent variables from observations is particularly challenging as the latent variables are not uniquely recoverable in the most general case. In this work, we consider both a nonparametric, nonstationary setting and a parametric setting for the latent processes and propose two provable conditions under which temporally causal latent processes can be identified from their nonlinear mixtures. We propose LEAP, a theoretically-grounded architecture that extends Variational Autoencoders (VAEs) by enforcing our conditions through proper constraints in causal process prior. Experimental results on various data sets demonstrate that temporally causal latent processes are reliably identified from observed variables under different dependency structures and that our approach considerably outperforms baselines that do not leverage history or nonstationarity information. This is one of the first works that successfully recover time-delayed latent processes from nonlinear mixtures without using sparsity or minimality assumptions.


翻译:我们的目标是从测量的时间数据中恢复时间延迟的潜在因果变数,并从测量的时间数据中查明这些变数的关系。从观测中估算与因果相关的潜在变数特别具有挑战性,因为在最一般的情况下,潜在变数并非独特的可回收变量。在这项工作中,我们既考虑非参数性、非静止的设置,也考虑潜在过程的参数设置,并提议两个可辨别的条件,据此可以从非线性混合物中找出时间性因果潜在变数。我们提议LEAP,这是一个理论上基础的结构,通过在因果过程之前的适当限制来实施我们的条件,扩展变异性自动变相器(VAE),以扩大我们的条件。各种数据集的实验结果表明,从不同依赖结构下观测到的变数中可以可靠地识别出时间性因果潜值过程,而且我们的方法大大超出基线,无法利用历史或非稳定性信息。这是在不使用宽度或最小性假设的情况下成功地从非线性混合物中回收时间延迟的潜值潜值过程的第一批工程之一。

1
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Gartner:2020年十大战略性技术趋势, 47页pdf
专知会员服务
76+阅读 · 2020年3月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年1月20日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
0+阅读 · 2022年1月20日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
7+阅读 · 2018年3月21日
Top
微信扫码咨询专知VIP会员