Multi-scale deconvolution is an ill-posed inverse problem in imaging, with applications ranging from microscopy, through medical imaging, to astronomical remote sensing. In the case of high-energy space telescopes, multi-scale deconvolution algorithms need to account for the peculiar property of native measurements, which are sparse samples of the Fourier transform of the incoming radiation. The present paper proposes a multi-scale version of CLEAN, which is the most popular iterative deconvolution method in Fourier space imaging. Using synthetic data generated according to a simulated but realistic source configuration, we show that this multi-scale version of CLEAN performs better than the original one in terms of accuracy, photometry, and regularization. Further, the application to a data set measured by the NASA Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) shows the ability of multi-scale CLEAN to reconstruct rather complex topographies, characteristic of a real flaring event.
翻译:摘要:多尺度去卷积是成像中的一个逆问题,应用范围涵盖从显微镜、医学成像到天文遥感。在高能太空望远镜的情境下,多尺度去卷积算法需要考虑本机测量的独特属性,即来自辐射傅里叶变换的稀疏样本。本文提出了 CLEAN 的多尺度版本,其是傅里叶空间成像中最流行的迭代去卷积方法。通过使用根据模拟但真实的源配置生成的合成数据,我们展示了这个多尺度版本比原来的更准确、更具光度学和正则化性能。进一步,通过对由美国宇航局 Reuven Ramaty 高能太阳光谱成像仪(RHESSI)测量的数据集的应用,展示了多尺度 CLEAN 重构相当复杂的真实闪耀事件的拓扑结构的能力。