Machine Learning (ML) has emerged as a core technology to provide learning models to perform complex tasks. Boosted by Machine Learning as a Service (MLaaS), the number of applications relying on ML capabilities is ever increasing. However, ML models are the source of different privacy violations through passive or active attacks from different entities. In this paper, we present MixNN a proxy-based privacy-preserving system for federated learning to protect the privacy of participants against a curious or malicious aggregation server trying to infer sensitive attributes. MixNN receives the model updates from participants and mixes layers between participants before sending the mixed updates to the aggregation server. This mixing strategy drastically reduces privacy without any trade-off with utility. Indeed, mixing the updates of the model has no impact on the result of the aggregation of the updates computed by the server. We experimentally evaluate MixNN and design a new attribute inference attack, Sim, exploiting the privacy vulnerability of SGD algorithm to quantify privacy leakage in different settings (i.e., the aggregation server can conduct a passive or an active attack). We show that MixNN significantly limits the attribute inference compared to a baseline using noisy gradient (well known to damage the utility) while keeping the same level of utility as classic federated learning.
翻译:机器学习( ML) 已经成为一种核心技术, 以提供学习模式来完成复杂任务。 由机器学习作为服务( MLaaS) 推动, 依赖 ML 能力的应用数量正在不断增加。 然而, ML 模型是通过不同实体的被动或主动攻击造成不同隐私侵犯的来源。 在本文中, 我们提出一个基于代理的隐私保护系统, 保护参与者的隐私, 以保护参与者的隐私, 使其不受试图推断敏感属性的好奇或恶意聚合服务器的伤害。 MixNNN 在向聚合服务器发送混合更新之前, 收到参与者和参与者之间的混合层的模型更新。 这种混合战略极大地降低了隐私, 而没有任何效用交易。 事实上, 混合模型更新不会影响服务器计算更新的结果。 我们实验性地评价 MixNNN 并设计一个新的属性攻击, 以利用 SGD 算法的隐私脆弱性来量化不同环境中的隐私渗漏( 即, 组合服务器可以进行被动或主动攻击 ) 。 我们显示 MixNNENS 显著限制将保密性特性限制, 同时将使用已知道的通用性电压水平维持为惯用基线。