Pufferfish privacy achieves $\epsilon$-indistinguishability over a set of secret pairs in the disclosed dataset. This paper studies how to attain pufferfish privacy by the exponential mechanism, an additive noise scheme that generalizes Gaussian and Laplace noise. A sufficient condition is derived showing that pufferfish privacy is attained by calibrating noise to the sensitivity of the Kantorovich optimal transport plan. Such a plan can be directly computed by using the data statistics conditioned on the secret, the prior knowledge about the system. It is shown that Gaussian noise provides better data utility than Laplace noise when the privacy budget $\epsilon$ is small. The sufficient condition is then relaxed to reduce the noise power. Experimental results show that the relaxed sufficient condition improves data utility of the pufferfish private data regulation schemes.
翻译:普费鱼类隐私权在披露的数据集中,通过一组秘密对子实现了$\ epsilon$-indistingishable 。本文研究如何通过指数机制实现海豚隐私。 指数机制是一个补充性噪音计划,对高山和拉帕特噪音进行概括。 有足够的条件表明,通过校准噪音来适应康托罗维奇最佳运输计划的敏感度,可以实现海豚隐私。 这种计划可以通过使用以秘密为条件的数据统计直接计算,这是以前对系统的知识。 这表明,在隐私预算为$\epsilon$时,高斯噪音比拉普特噪音提供了更好的数据实用性。 足够条件随后得到放松,以降低噪音力。 实验结果显示,宽松的足够条件改善了海豚私人数据监管计划的数据实用性。