There is no denying how machine learning and computer vision have grown in the recent years. Their highest advantages lie within their automation, suitability, and ability to generate astounding results in a matter of seconds in a reproducible manner. This is aided by the ubiquitous advancements reached in the computing capabilities of current graphical processing units and the highly efficient implementation of such techniques. Hence, in this paper, we survey the key studies that are published between 2014 and 2020, showcasing the different machine learning algorithms researchers have used to segment the liver, hepatic-tumors, and hepatic-vasculature structures. We divide the surveyed studies based on the tissue of interest (hepatic-parenchyma, hepatic-tumors, or hepatic-vessels), highlighting the studies that tackle more than one task simultaneously. Additionally, the machine learning algorithms are classified as either supervised or unsupervised, and further partitioned if the amount of works that fall under a certain scheme is significant. Moreover, different datasets and challenges found in literature and websites, containing masks of the aforementioned tissues, are thoroughly discussed, highlighting the organizers original contributions, and those of other researchers. Also, the metrics that are used excessively in literature are mentioned in our review stressing their relevancy to the task at hand. Finally, critical challenges and future directions are emphasized for innovative researchers to tackle, exposing gaps that need addressing such as the scarcity of many studies on the vessels segmentation challenge, and why their absence needs to be dealt with in an accelerated manner.
翻译:不可否认的是,近年来机器学习和计算机视觉是如何增长的。它们的最大优势在于自动化、适合性和在几秒钟内以可复制的方式产生惊人结果的能力。这得益于当前图形处理单位计算机能力普遍的进步以及这类技术的高效应用。因此,我们在本文件中调查了2014年至2020年出版的关键研究,展示了不同机器学习算法研究人员用来分割肝脏、肝脏扰动器和肝血管结构的稀缺度。我们根据兴趣组织(肝脏分泌、肝瘤或肝血管-血管-血管-血管-血管-血管-血管)进行的研究分解,突出当前创新处理器计算机处理器的计算能力以及同时完成一项以上任务的研究。此外,我们在本文件中,机器学习算法被归类为要么监督要么不监管,要么进一步分解,如果某个计划下的工作数量是巨大的。此外,在文献和网站发现的不同数据集和挑战,包含上述组织口罩,我们根据兴趣组织划分的研究(肝脏-细胞-细胞-细胞-细胞分解)进行分解,我们最后要强调同时处理一项任务的研究。 机器学习算法的算法被归为“监督者” 。在研究中,在研究中需要深入地强调这些原始研究,在研究中,在研究中,在研究中,在研究中,在研究中,在研究中要强调原始分析中,在研究中,在研究中,在研究中,在研究中,在研究中要强调这些原始分析中要强调,在研究中,在研究中,在研究中,在研究中,在研究中,在研究中要强调。