We study numerical methods for dissipative particle dynamics (DPD), which is a system of stochastic differential equations and a popular stochastic momentum-conserving thermostat for simulating complex hydrodynamic behavior at mesoscales. We propose a new splitting method that is able to substantially improve the accuracy and efficiency of DPD simulations in a wide range of the friction coefficients, particularly in the extremely large friction limit that corresponds to a fluid-like Schmidt number, a key issue in DPD. Various numerical experiments on both equilibrium and transport properties are performed to demonstrate the superiority of the newly proposed method over popular alternative schemes in the literature.
翻译:我们研究消散粒子动力学(DPD)的数值方法,这是一种随机差分方程系统和一种流行的随机动能动力节能自动调温器,用于模拟中间尺度的复杂流体动力学行为。我们提出了一种新的分解方法,它能够大幅度提高DPD模拟在广泛的摩擦系数中的准确性和效率,特别是在极大的摩擦限度中,这种摩擦限度与流体相似的施密特号相对应,这是DPD的一个关键问题。在平衡和运输特性方面进行了各种数字实验,以表明新提出的方法优于文献中流行的替代方法。