The logical separation of control signaling from data transmission in a mobile cellular network has been shown to have significant energy saving potential compared with the legacy systems. As a result, there has been a lot of focus in recent years on development and realization of separation architectures. Our study, however, shows that the energy savings of separation architecture remain under 16-17% when compared with legacy systems and this gain falls to a mere 7% when both architectures are realized under a CloudRAN (CRAN) setting. Moreover, when we strategically place some small base-stations (SBSs) to cover the area in a densely deployed scenario and allow all other base-stations (BSs) to be used only on-demand, the system consumes much less energy than the separation architecture. While we expected that most equipment would be shut down during nights, our study shows that around 70% of the small cells are required to be active to serve randomly distributed minimum data load, i.e., active mobile equipment. Contemporary mobile traffic is predominantly data which does not go to extremely low levels during nights. We discuss, in detail, the assumptions, their implications, and the effects of system parameter values on our conclusions.


翻译:与移动蜂窝网络的数据传输相比,控制信号与移动蜂窝网络数据传输的逻辑分离证明具有巨大的节能潜力,因此,近年来对分离结构的开发和实现给予了大量关注。然而,我们的研究显示,与遗留系统相比,分离结构的节能率仍然低于16-17%,当两个结构在云端系统(CRAN)设置下实现时,这一增益将降至7%。此外,当我们战略性地将一些小型基站(SBS)用于覆盖密集部署的情景,并允许所有其他基站(BS)仅按需使用时,该系统消耗的能源远远少于隔离结构。虽然我们预计大多数设备会在夜间关闭,但我们的研究显示,大约70%的小细胞需要活跃于随机分配的最低数据负荷,即动态移动设备。当代移动交通主要是数据,在夜间不会达到极低的水平。我们详细讨论了系统参数值对我们结论的假设、影响和影响。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年3月21日
Arxiv
0+阅读 · 2021年3月21日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员