Sequential Recommendation (SR) models user dynamics and predicts the next preferred items based on the user history. Existing SR methods model the 'was interacted before' item-item transitions observed in sequences, which can be viewed as an item relationship. However, there are multiple auxiliary item relationships, e.g., items from similar brands and with similar contents in real-world scenarios. Auxiliary item relationships describe item-item affinities in multiple different semantics and alleviate the long-lasting cold start problem in the recommendation. However, it remains a significant challenge to model auxiliary item relationships in SR. To simultaneously model high-order item-item transitions in sequences and auxiliary item relationships, we propose a Multi-relational Transformer capable of modeling auxiliary item relationships for SR (MT4SR). Specifically, we propose a novel self-attention module, which incorporates arbitrary item relationships and weights item relationships accordingly. Second, we regularize intra-sequence item relationships with a novel regularization module to supervise attentions computations. Third, for inter-sequence item relationship pairs, we introduce a novel inter-sequence related items modeling module. Finally, we conduct experiments on four benchmark datasets and demonstrate the effectiveness of MT4SR over state-of-the-art methods and the improvements on the cold start problem. The code is available at https://github.com/zfan20/MT4SR.
翻译:序列建议(SR) 模型用户动态, 并预测基于用户历史的下一个首选项目。 现有的SR 方法模型“ 之前是互动的 ”, 以序列和辅助项目关系中观察到的项目项转换同时模式, 我们提议一个多级关系变换器, 能够模拟SR(MT4SR)的辅助项目关系。 具体地说, 我们提出一个新的自我注意模块, 包含任意的项目关系和加权项目关系。 其次, 我们规范后继项目关系, 并规范一个新颖的正规化模块, 以监督关注度的计算。 第三, 后继项目关系配对, 我们提出一个在序列和辅助项目关系中同时进行高级项目转换的多级变换器, 能够模拟SR(MT4SR) 的辅助项目关系。 具体地说, 我们提出一个新的自我注意模块, 包含任意的项关系和加权项目关系。 第二, 我们将后继项目关系与新的正规化模块 调整 20 以监督关注度 。 第三, 对于后继项目配, 我们提出后继项目 的后继项目, 我们提出一个新的系统间项目转换的系统间项目 系统间/ 测试模式 的模型 。