The 100 MW cryogenic liquid oxygen/hydrogen multi-injector combustor BKD operated by the DLR Institute of Space Propulsion is a research platform that allows the study of thermoacoustic instabilities under realistic conditions, representative of small upper stage rocket engines. We use data from BKD experimental campaigns in which the static chamber pressure and fuel-oxidizer ratio are varied such that the first tangential mode of the combustor is excited under some conditions. We train an autoregressive Bayesian neural network model to forecast the amplitude of the dynamic pressure time series, inputting multiple sensor measurements (injector pressure/ temperature measurements, static chamber pressure, high-frequency dynamic pressure measurements, high-frequency OH* chemiluminescence measurements) and future flow rate control signals. The Bayesian nature of our algorithms allows us to work with a dataset whose size is restricted by the expense of each experimental run, without making overconfident extrapolations. We find that the networks are able to accurately forecast the evolution of the pressure amplitude and anticipate instability events on unseen experimental runs 500 milliseconds in advance. We compare the predictive accuracy of multiple models using different combinations of sensor inputs. We find that the high-frequency dynamic pressure signal is particularly informative. We also use the technique of integrated gradients to interpret the influence of different sensor inputs on the model prediction. The negative log-likelihood of data points in the test dataset indicates that predictive uncertainties are well-characterized by our Bayesian model and simulating a sensor failure event results as expected in a dramatic increase in the epistemic component of the uncertainty.


翻译:由德国航天研究所空间推进研究所操作的100兆瓦低温液液氧/氢液溶液/氢性多射体梳理器BKD是一个研究平台,它是一个研究平台,可以在现实条件下研究温度不稳定性,代表小型上级火箭发动机。我们使用来自BKD实验活动的数据,静态室压和燃料氧化器比率各不相同,这样组合体的第一个正向模式在某些条件下会激动。我们训练了一种自动反向贝氏神经系统网络模型模型,以预测动态压力时间序列的振动,输入多传感器测量(弹压/温度测量、静态室压力、高频动态压力测量、高频 OH* 光度测量)和未来的流速控制信号。我们算法的巴伊斯性质使我们能够与一个数据集合作,该数据集的大小因每次实验模型的费用而受到限制,而没有产生过分自信心外推论。我们发现这些网络能够准确预测压力振动模型的振动性变化,并预测多种传感器测量的多波度测量结果(输入、静态室压力压力压力测量、高振动压力压力压力压力压力压力压力压力测量、高压压力压力压力压力压力压力压力压力压力压力压力压力测量测量、高压测量、高压测量、高振动压力测量、高振动度测量、高振动度测量、高光光光光光光光光光度测量测量测量测量测量数据测量数据测量、在500年的精确度测算中,我们用了高的精确度测量度测测算的精确度测量度测算的精确度测算、在使用了500年的精确度测算,在实验性测算中,在实验性测算中,在500年的精确度测算中,在实验性测算中,在实验性测算中,我们用了一种不同的感变压感变压性变电压性变电压性变电压感变电。我们用高的精确学中,在实验性变电压性变电压性变电算中,在使用了不同的精确学中,在使用了500次中测算中,在使用了不同电压变电压变电压变电压变电压变电压变电压变电压变电压变电压变电压变电压变电压变电算算中

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
已删除
将门创投
11+阅读 · 2019年8月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关资讯
已删除
将门创投
11+阅读 · 2019年8月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员