Hazard detection and avoidance is a key technology for future robotic small body sample return and lander missions. Current state-of-the-practice methods rely on high-fidelity, a priori terrain maps, which require extensive human-in-the-loop verification and expensive reconnaissance campaigns to resolve mapping uncertainties. We propose a novel safety mapping paradigm that leverages deep semantic segmentation techniques to predict landing safety directly from a single monocular image, thus reducing reliance on high-fidelity, a priori data products. We demonstrate precise and accurate safety mapping performance on real in-situ imagery of prospective sample sites from the OSIRIS-REx mission.
翻译:危险探测和避免是未来机器人小型人体样本返回和着陆飞行任务的关键技术,目前的做法方法依赖于高忠诚度,即先验地形图,需要广泛的现场人核查和昂贵的勘测活动,以解决测绘不确定性问题。我们提议一种新的安全绘图模式,利用深度语系分解技术,直接从单一的单体图像中预测着陆安全,从而减少对高度忠诚、先验数据产品的依赖。我们对OSIRIS-REx飞行任务潜在取样点的实际现场图像展示准确和准确的安全绘图性能。