This paper describes a machine learning (ML) framework for tropical cyclone intensity and track forecasting, combining multiple distinct ML techniques and utilizing diverse data sources. Our framework, which we refer to as Hurricast (HURR), is built upon the combination of distinct data processing techniques using gradient-boosted trees and novel encoder-decoder architectures, including CNN, GRU and Transformers components. We propose a deep-feature extractor methodology to mix spatial-temporal data with statistical data efficiently. Our multimodal framework unleashes the potential of making forecasts based on a wide range of data sources, including historical storm data, and visual data such as reanalysis atmospheric images. We evaluate our models with current operational forecasts in North Atlantic and Eastern Pacific basins on 2016-2019 for 24-hour lead time, and show our models consistently outperform statistical-dynamical models and compete with the best dynamical models, while computing forecasts in seconds. Furthermore, the inclusion of Hurricast into an operational forecast consensus model leads to a significant improvement of 5% - 15% over NHC's official forecast, thus highlighting the complementary properties with existing approaches. In summary, our work demonstrates that combining different data sources and distinct machine learning methodologies can lead to superior tropical cyclone forecasting. We hope that this work opens the door for further use of machine learning in meteorological forecasting.
翻译:本文介绍了热带气旋强度和跟踪预报的机器学习(ML)框架,其中结合了多种不同的ML技术和利用多种数据来源。我们称之为Hurricast(HURRRR)的框架,其基础是使用梯度推进树和新型编码解码结构(包括CNN、GRU和变异器组件)的不同数据处理技术的组合。我们提出了一个深功能提取方法,将空间数据与统计数据高效地结合起来。我们的多模式框架释放出根据广泛的数据来源(包括历史风暴数据)以及重新分析大气图像等视觉数据进行预测的潜力。我们评估我们的模式,在2016-2019年的北大西洋和东太平洋盆地24小时前使用目前的业务预测,并显示我们的模式始终超越统计动态模型,与最佳动态模型竞争,同时在数秒内计算预测。此外,将Hurricast纳入业务预测共识模型,导致显著改进5%至15%比NHC正式预测高出5%,从而突出现有方法的补充性。我们总结后,我们的工作展示了目前对北大西洋和东太平洋盆地盆地的模型的模型进行24小时的运行预测,同时显示我们的模型与不同数据来源之间的学习。我们的工作可以进一步学习。