The error rates of quantum devices are orders of magnitude higher than what is needed to run most quantum applications. To close this gap, Quantum Error Correction (QEC) encodes logical qubits and distributes information using several physical qubits. By periodically executing a syndrome extraction circuit on the logical qubits, information about errors (called syndrome) is extracted while running programs. A decoder uses these syndromes to identify and correct errors in real time, which is required to use feedback implemented in quantum algorithms. Unfortunately, software decoders are slow and hardware decoders are fast but less accurate. Thus, almost all QEC studies so far have relied on offline decoding. To enable real-time decoding in near-term QEC, we propose LILLIPUT-- a Lightweight Low Latency Look-Up Table decoder. LILLIPUT consists of two parts-- First, it translates syndromes into error detection events that index into a Look-Up Table (LUT) whose entry provides the error information in real-time. Second, it programs the LUTs with error assignments for all possible error events by running a software decoder offline. LILLIPUT tolerates an error on any operation in the quantum hardware, including gates and measurement, and the number of tolerated errors grows with the size of the code. It needs <7% logic on off-the-shelf FPGAs that allows it to be easily integrated alongside the control and readout circuits in existing systems. LILLIPUT incurs a latency of few nanoseconds and enables real-time decoding. We also propose Compressed LUTs (CLUTs) to reduce the memory needed by LILLIPUT. By exploiting the fact that not all error events are equally likely and only storing data for the most probable error events, CLUTs reduce the memory needed by up-to 107x (from 148 MB to 1.38 MB) without degrading accuracy.


翻译:量子装置的误差率比大多数量子应用程序需要的精确度要高。 为了缩小这一差距, 量子错误校正( QEC) 将逻辑 qubits 编码成逻辑 qubits 并使用几种物理 qubits 发布信息。 通过在逻辑 qubits 上定期执行综合症提取电路, 运行程序时会提取关于错误( 所谓的综合症) 的信息。 解码器使用这些综合征来识别和纠正实时错误, 而使用量子算法执行的反馈是必需的。 不幸的是, 软件解码器慢慢, 硬件解码器快速但不准确。 因此, 到目前为止几乎所有的 QEC 研究都依赖于离线解码 quot。 它用LLLULULUT 的实时解析算算算算法, 也使得内部货币货币联盟的内值错误能够让内部货币联盟的里程和内部货币联盟的里程运行一个直径错误。

0
下载
关闭预览

相关内容

【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
45+阅读 · 2021年9月19日
最新《图理论》笔记书,98页pdf
专知会员服务
76+阅读 · 2020年12月27日
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
16+阅读 · 2020年8月23日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
逆强化学习几篇论文笔记
CreateAMind
9+阅读 · 2018年12月13日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
逆强化学习几篇论文笔记
CreateAMind
9+阅读 · 2018年12月13日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员