Urban intersections are prone to delays and inefficiencies due to static precedence rules and occlusions limiting the view on prioritized traffic. Existing approaches to improve traffic flow, widely known as automatic intersection management systems, are mostly based on non-learning reservation schemes or optimization algorithms. Machine learning-based techniques show promising results in planning for a single ego vehicle. This work proposes to leverage machine learning algorithms to optimize traffic flow at urban intersections by jointly planning for multiple vehicles. Learning-based behavior planning poses several challenges, demanding for a suited input and output representation as well as large amounts of ground-truth data. We address the former issue by using a flexible graph-based input representation accompanied by a graph neural network. This allows to efficiently encode the scene and inherently provide individual outputs for all involved vehicles. To learn a sensible policy, without relying on the imitation of expert demonstrations, the cooperative planning task is phrased as a reinforcement learning problem. We train and evaluate the proposed method in an open-source simulation environment for decision making in automated driving. Compared to a first-in-first-out scheme and traffic governed by static priority rules, the learned planner shows a significant gain in flow rate, while reducing the number of induced stops. In addition to synthetic simulations, the approach is also evaluated based on real-world traffic data taken from the publicly available inD dataset.


翻译:现有改进交通流量的方法(广为人知的自动交叉管理系统)主要基于非学习预订计划或优化算法; 机械学习技术在规划单一自利车辆方面显示出有希望的成果; 这项工作提议利用机器学习算法,通过联合规划多辆车,优化城市交叉路口的交通流量; 基于学习的行为规划带来了若干挑战,要求有合适的投入和产出代表以及大量的地面实况数据。我们通过使用灵活的图表输入代表制和由静态优先规则管理的流动数据,来应对前一个问题。这样可以有效地对场景进行编码,并必然为所有所涉车辆提供个别产出。 要学习明智的政策,而不依赖专家示范的仿照,合作规划任务的措辞就是一个强化学习问题。 我们从开放源模拟环境中对自动化驾驶决策的拟议方法进行培训和评价。 与先出方案和由静态优先规则监管的交通相比,学习过的计划也显示从流动率中大幅增长。

1
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
SCI征稿 | IJCKG 2021,KG&GNN相关均可投递
图与推荐
0+阅读 · 2021年10月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
SCI征稿 | IJCKG 2021,KG&GNN相关均可投递
图与推荐
0+阅读 · 2021年10月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员