Predicting intraday trading volume plays an important role in trading alpha research. Existing methods such as rolling means(RM) and a two-states based Kalman Filtering method have been presented in this topic. We extend two states into various states in Kalman Filter framework to improve the accuracy of prediction. Specifically, for different stocks we utilize cross validation and determine best states number by minimizing mean squared error of the trading volume. We demonstrate the effectivity of our method through a series of comparison experiments and numerical analysis.
翻译:预测日内贸易量在交易阿尔法研究中起着重要作用,在本专题中介绍了滚动手段(RM)和基于两国的Kalman过滤法等现有方法。我们把两个州扩大到卡尔曼过滤器框架中的各个州,以提高预测的准确性。具体地说,对于不同的库存,我们使用交叉验证,并通过尽量减少交易量的平方差错来确定最佳状态。我们通过一系列比较试验和数字分析来展示我们的方法的效果。