Learning node representation on dynamically-evolving, multi-relational graph data has gained great research interest. However, most of the existing models for temporal knowledge graph forecasting use Recurrent Neural Network (RNN) with discrete depth to capture temporal information, while time is a continuous variable. Inspired by Neural Ordinary Differential Equation (NODE), we extend the idea of continuum-depth models to time-evolving multi-relational graph data, and propose a novel Temporal Knowledge Graph Forecasting model with NODE. Our model captures temporal information through NODE and structural information through a Graph Neural Network (GNN). Thus, our graph ODE model achieves a continuous model in time and efficiently learns node representation for future prediction. We evaluate our model on six temporal knowledge graph datasets by performing link forecasting. Experiment results show the superiority of our model.
翻译:在动态变化的多关系图表数据中,学习节点的表示方式引起了极大的研究兴趣。然而,大多数现有的时间知识图表预测模型都使用了具有离散深度的经常性神经网络(RNN)来捕捉时间信息,而时间则是一个连续的变量。在神经普通差异方程式(NODE)的启发下,我们将连续深度模型的概念推广到具有时间变化的多关系图表数据中,并提出了与 NODE 合作的新型时空知识图表预测模型。我们的模型通过图形神经网络(GNN)捕捉时间信息,并通过数字神经网络(GNN)获取结构信息。因此,我们的图形数据模型在时间上可以实现一个连续模型,并有效地学习未来预测的节点。我们通过进行链接预测来评估我们六种时间知识图形数据集的模型。实验结果显示了我们模型的优势。