Multi-view subspace clustering methods have employed learned self-representation tensors from different tensor decompositions to exploit low rank information. However, the data structures embedded with self-representation tensors may vary in different multi-view datasets. Therefore, a pre-defined tensor decomposition may not fully exploit low rank information for a certain dataset, resulting in sub-optimal multi-view clustering performance. To alleviate the aforementioned limitations, we propose the adaptively topological tensor network (ATTN) by determining the edge ranks from the structural information of the self-representation tensor, and it can give a better tensor representation with the data-driven strategy. Specifically, in multi-view tensor clustering, we analyze the higher-order correlations among different modes of a self-representation tensor, and prune the links of the weakly correlated ones from a fully connected tensor network. Therefore, the newly obtained tensor networks can efficiently explore the essential clustering information with self-representation with different tensor structures for various datasets. A greedy adaptive rank-increasing strategy is further applied to improve the capture capacity of low rank structure. We apply ATTN on multi-view subspace clustering and utilize the alternating direction method of multipliers to solve it. Experimental results show that multi-view subspace clustering based on ATTN outperforms the counterparts on six multi-view datasets.
翻译:多视角子空间聚类方法利用不同张量分解学习的自我表示张量来利用低秩信息。然而,嵌入自我表示张量的数据结构可能在不同的多视角数据集中发生变化。因此,预定义的张量分解可能不能完全利用某个数据集的低秩信息,从而导致次优的多视角聚类性能。为了缓解上述局限,我们提出了自适应拓扑张量网络(ATTN),通过确定自我表示张量的结构信息来确定边缘秩,并采用数据驱动策略给出更好的张量表示。具体而言,在多视角张量聚类中,我们分析自我表示张量的不同模式之间的高阶相关性,并从完全连接的张量网络中裁剪薄弱相关的连接。因此,新得到的张量网络可以有效地探索具有不同张量结构的自我表示的基本聚类信息以适应各种数据集。进一步采用贪心的自适应秩增加策略来提高低秩结构的捕捉能力。我们将ATTN应用于多视角子空间聚类,并利用多重方向乘法法来求解。实验结果表明,基于ATTN的多视角子空间聚类优于六个多视角数据集上的相应聚类器。