The success of deep learning techniques over the last decades has opened up a new avenue of research for weather forecasting. Here, we take the novel approach of using a neural network to predict probability density functions rather than a single output value, thus producing a probabilistic weather forecast. This enables the calculation of both uncertainty and skill metrics for the neural network predictions, and overcomes the common difficulty of inferring uncertainty from these predictions. This approach is purely data-driven and the neural network is trained on the WeatherBench dataset (processed ERA5 data) to forecast geopotential and temperature 3 and 5 days ahead. An extensive data exploration leads to the identification of the most important input variables, which are also found to agree with physical reasoning, thereby validating our approach. In order to increase computational efficiency further, each neural network is trained on a small subset of these variables. The outputs are then combined through a stacked neural network, the first time such a technique has been applied to weather data. Our approach is found to be more accurate than some numerical weather prediction models and as accurate as more complex alternative neural networks, with the added benefit of providing key probabilistic information necessary for making informed weather forecasts.
翻译:过去几十年深层学习技术的成功为天气预报开辟了一个新的研究途径。 在这里,我们采用了使用神经网络预测概率密度函数的新颖方法,而不是单一输出值,从而产生一种概率天气预报。这样可以计算神经网络预测的不确定性和技能度量,并克服从这些预测中推断不确定性的共同困难。这一方法纯粹是数据驱动的,神经网络在天气基准数据集(经处理的ERA5数据)上接受培训,以预测未来3天和5天的地球潜能和温度。广泛的数据探索导致确定最重要的输入变量,这些变量也被认为与物理推理一致,从而验证了我们的方法。为了进一步提高计算效率,每个神经网络都经过了有关这些变量中一小部分的训练。然后通过堆积的神经网络将产出结合起来,这是首次将这种技术应用于天气数据。我们的方法比一些数字天气预测模型更准确,并且作为更复杂的替代神经网络更为准确,因此也发现这些变量与物理推理一致,从而验证了我们的方法。为了进一步提高计算效率,每个神经网络都用这些变量中的一小部分。然后通过堆积的神经网络,然后通过一个神经网络将这种技术合并起来,首次应用于天气数据。 我们的方法被认为比一些数字天气预测模型更加精确,作为比较必要的替代网络,从而产生关键的预测。