We initiate the study of coresets for clustering in graph metrics, i.e., the shortest-path metric of edge-weighted graphs. Such clustering problems are essential to data analysis and used for example in road networks and data visualization. A coreset is a compact summary of the data that approximately preserves the clustering objective for every possible center set, and it offers significant efficiency improvements in terms of running time, storage, and communication, including in streaming and distributed settings. Our main result is a near-linear time construction of a coreset for k-Median in a general graph $G$, with size $O_{\epsilon, k}(\mathrm{tw}(G))$ where $\mathrm{tw}(G)$ is the treewidth of $G$, and we complement the construction with a nearly-tight size lower bound. The construction is based on the framework of Feldman and Langberg [STOC 2011], and our main technical contribution, as required by this framework, is a uniform bound of $O(\mathrm{tw}(G))$ on the shattering dimension under any point weights. We validate our coreset on real-world road networks, and our scalable algorithm constructs tiny coresets with high accuracy, which translates to a massive speedup of existing approximation algorithms such as local search for graph k-Median.
翻译:我们开始研究用于在图形指标中分组的核心数据集,即边缘加权图表的最短路径度量。这种组合问题对于数据分析至关重要,并且用于道路网络和数据可视化。一个核心数据集是一个数据简明摘要,它大致保留了每个可能的中心集的组合目标,在运行时间、储存和通信方面,包括在流流流和分布设置方面,提供了显著的效率改进。我们的主要结果是在总图中为 k- Median 构建一个核心数据集近线时间结构,总图为$G$,其大小为$ ⁇ epslon, k}(matthrm{tw}(G)),其大小为$\mathrm{tw}(G),其中$是每一组可能的中心集的树枝节,我们以近乎临界的大小更小的范围来补充施工。建设基于Feldman和Langberg的框架[STOC 2011],而我们的主要技术贡献,按照这个框架的要求,是在我们的任何O(mathrem{tal) ligal-alalalal combalal commabilal combisal subilizal subislation 上,这是我们在任何可搜索点之下,我们可翻缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩的轨道网络。