Maintaining stability during the single-support phase is a fundamental challenge in humanoid robotics, particularly in dance robots that require complex maneuvers and high mechanical freedom. Traditional tethered sensor configurations often restrict joint movement and introduce mechanical noises. This study proposes a wireless embedded balance system designed to maintain stability on uneven surfaces. The system utilizes a custom-designed foot unit integrated with four load cells and an ESP32-C3 microcontroller to estimate the Center of Pressure (CoP) in real time. The CoP data were transmitted wirelessly to the main controller to minimize the wiring complexity of the 29-DoF VI-ROSE humanoid robot. A PID control strategy is implemented to adjust the torso, hip, and ankle roll joints based on CoP feedback. Experimental characterization demonstrated high sensor precision with an average measurement error of 14.8 g. Furthermore, the proposed control system achieved a 100% success rate in maintaining balance during single-leg lifting tasks at a 3-degree inclination with optimized PID parameters (Kp=0.10, Kd=0.005). These results validate the efficacy of wireless CoP feedback in enhancing the postural stability of humanoid robots, without compromising their mechanical flexibility.
翻译:在单腿支撑阶段保持稳定性是仿人机器人领域的一项基本挑战,对于需要复杂动作和高机械自由度的舞蹈机器人尤为如此。传统的线缆式传感器配置通常会限制关节运动并引入机械噪声。本研究提出了一种无线嵌入式平衡系统,旨在实现不平坦表面的稳定控制。该系统采用定制设计的足部单元,集成四个称重传感器与ESP32-C3微控制器,以实时估计压力中心。压力中心数据通过无线方式传输至主控制器,从而最大程度简化了29自由度VI-ROSE仿人机器人的布线复杂度。系统采用PID控制策略,根据压力中心反馈调节躯干、髋部和踝部滚转关节。实验标定表明传感器具有高精度,平均测量误差为14.8克。此外,在采用优化PID参数(Kp=0.10,Kd=0.005)的条件下,所提出的控制系统在3度倾斜面的单腿抬升任务中实现了100%的平衡保持成功率。这些结果验证了无线压力中心反馈在提升仿人机器人姿态稳定性方面的有效性,且未损害其机械灵活性。