In this paper, we exploit the capability of multi-agent deep reinforcement learning (MA-DRL) technique to generate a transmit power pool (PP) for Internet of things (IoT) networks with semi-grant-free non-orthogonal multiple access (SGF-NOMA). The PP is mapped with each resource block (RB) to achieve distributed transmit power control (DPC). We first formulate the resource (sub-channel and transmit power) selection problem as stochastic Markov game, and then solve it using two competitive MA-DRL algorithms, namely double deep Q network (DDQN) and Dueling DDQN. Each GF user as an agent tries to find out the optimal transmit power level and RB to form the desired PP. With the aid of dueling processes, the learning process can be enhanced by evaluating the valuable state without considering the effect of each action at each state. Therefore, DDQN is designed for communication scenarios with a small-size action-state space, while Dueling DDQN is for a large-size case. Our results show that the proposed MA-Dueling DDQN based SGF-NOMA with DPC outperforms the SGF-NOMA system with the fixed-power-control mechanism and networks with pure GF protocols with 17.5% and 22.2% gain in terms of the system throughput, respectively. Moreover, to decrease the training time, we eliminate invalid actions (high transmit power levels) to reduce the action space. We show that our proposed algorithm is computationally scalable to massive IoT networks. Finally, to control the interference and guarantee the quality-of-service requirements of grant-based users, we find the optimal number of GF users for each sub-channel.


翻译:在本文中,我们利用多试剂深层强化学习(MA-DRL)技术的能力,为具有半无赠与非垂直多存(SGF-NOMA)的互联网(IoT)网络生成一个传输电源库(PP),与每个资源块(RB)一起绘制PP图,以实现分布式传输电源控制(DPC)。我们首先将资源(分流和传输电源)选择问题作为随机式Markov游戏来开发,然后使用两个有竞争力的MA-DRL算法来解决它,即双深Q网络(DDQN)和DDQN。每个GF用户作为代理试图找到最佳传输电量和 RB 以形成理想的PPP。在配电程序的帮助下,通过评价有价值的状态,而不考虑每个州每次行动的效果。因此,DDQN设计DQ(DQN)用于小规模行动空间的通信场景,而DDQN则用于大型案件。我们的结果显示,每一个MA-DFS-MARELS-SMASMASMASMASMASMASMASMASMASDRDRDRRADFSODFSODFSDFSDFSODFSOLLLLLLLLLLLLLLLL 和22级SMASMASMASMASMASMASMASMASMASMASMASMASMASMASMASMASMASDRDRDRDRMRDRDRMRDRDRDRDRDRDRDRDRMLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLDADODADODODODODADODODODODADADADADADADADADODADADADADADADADADADADODADADADADADADADADADADADA

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年8月19日
VIP会员
相关VIP内容
相关资讯
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员