Interpolation is a fundamental technique in scientific computing and is at the heart of many scientific visualization techniques. There is usually a trade-off between the approximation capabilities of an interpolation scheme and its evaluation efficiency. For many applications, it is important for a user to be able to navigate their data in real time. In practice, the evaluation efficiency (or speed) outweighs any incremental improvements in reconstruction fidelity. In this two-part work, we first analyze from a general standpoint the use of compact piece-wise polynomial basis functions to efficiently interpolate data that is sampled on a lattice. In the sequel, we detail how we generate efficient implementations via automatic code generation on both CPU and GPU architectures. Specifically, in this paper, we propose a general framework that can produce a fast evaluation scheme by analyzing the algebro-geometric structure of the convolution sum for a given lattice and basis function combination. We demonstrate the utility and generality of our framework by providing fast implementations of various box splines on the Body Centered and Face Centered Cubic lattices, as well as some non-separable box splines on the Cartesian lattice. We also provide fast implementations for certain Voronoi splines that have not yet appeared in the literature. Finally, we demonstrate that this framework may also be used for non-Cartesian lattices in 4D.
翻译:内插是科学计算中的一项基本技术,是许多科学直观化技术的核心。 内插计划的近似能力与其评价效率之间通常存在一种权衡。 对于许多应用程序,用户必须能够实时浏览数据。 实际上, 评估效率( 或速度) 大于重建忠诚度的任何递增改进。 在这两部分工作中, 我们首先从一个总的角度分析使用紧凑的片段和多元基函数, 以高效地对一个 lattice 上抽样的数据进行调试。 在续集中, 我们详细介绍了我们如何通过在 CPU 和 GPU 结构上自动生成代码来产生高效的实施。 具体地说, 在本文中, 我们提议了一个总框架, 通过分析一个给定的阵列和基础功能的组合, 来生成一个快速的评估计划。 我们通过在身体中枢和面 Cubitic laticles 上提供各种框条纹的快速实施功能和一般的功能。 我们提议了一个总框架, 也可以在“ 我们不使用 ” 样框框框框框中展示, 。