The COVID-19 pandemic has spread globally for several months. Because its transmissibility and high pathogenicity seriously threaten people's lives, it is crucial to accurately and quickly detect COVID-19 infection. Many recent studies have shown that deep learning (DL) based solutions can help detect COVID-19 based on chest CT scans. However, most existing work focuses on 2D datasets, which may result in low quality models as the real CT scans are 3D images. Besides, the reported results span a broad spectrum on different datasets with a relatively unfair comparison. In this paper, we first use three state-of-the-art 3D models (ResNet3D101, DenseNet3D121, and MC3\_18) to establish the baseline performance on the three publicly available chest CT scan datasets. Then we propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification with the Gumbel Softmax technique to improve the searching efficiency. We further exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results. The experimental results show that our automatically searched models (CovidNet3D) outperform the baseline human-designed models on the three datasets with tens of times smaller model size and higher accuracy. Furthermore, the results also verify that CAM can be well applied in CovidNet3D for COVID-19 datasets to provide interpretability for medical diagnosis.
翻译:COVID-19大流行已经在全球蔓延了几个月。 因为它的可传播性和高致病性严重威胁人们的生命,因此,准确和快速检测COVID-19感染至关重要。许多最近的研究表明,基于深层次学习(DL)的解决方案可以帮助在胸前CT扫描的基础上检测COVID-19。然而,大部分现有工作侧重于2D数据集,这可能导致低质量模型,因为真正的CT扫描是3D图像。此外,报告的结果涉及不同数据集的广泛范围,相对不公平的比较。在本文中,我们首先使用三种最先进的3D型模型(ResNet3D101、DenseNet3D121和MC3Q ⁇ 18)来建立三个公开的胸前CT扫描数据集的基线性性能。 然后,我们提出一个不同的神经结构搜索框架,以自动搜索3DD型胸部扫描模型,用Gumbel Softmax技术来改进搜索效率。 我们进一步利用三种最先进的3D型的3Net型模型(CAM) 来进一步利用更精确的C-D型操作性定位模型来解释我们的C-C-ROD模型。