We consider generalized operator eigenvalue problems in variational form with random perturbations in the bilinear forms. This setting is motivated by variational forms of partial differential equations with random input data. The considered eigenpairs can be of higher but finite multiplicity. We investigate stochastic quantities of interest of the eigenpairs and discuss why, for multiplicity greater than 1, only the stochastic properties of the eigenspaces are meaningful, but not the ones of individual eigenpairs. To that end, we characterize the Fr\'echet derivatives of the eigenpairs with respect to the perturbation and provide a new linear characterization for eigenpairs of higher multiplicity. As a side result, we prove local analyticity of the eigenspaces. Based on the Fr\'echet derivatives of the eigenpairs we discuss a meaningful Monte Carlo sampling strategy for multiple eigenvalues and develop an uncertainty quantification perturbation approach. Numerical examples are presented to illustrate the theoretical results.
翻译:暂无翻译