Smart mobility management would be an important prerequisite for future fog computing systems. In this research, we propose a learning-based handover optimization for the Internet of Vehicles that would assist the smooth transition of device connections and offloaded tasks between fog nodes. To accomplish this, we make use of machine learning algorithms to learn from vehicle interactions with fog nodes. Our approach uses a three-layer feed-forward neural network to predict the correct fog node at a given location and time with 99.2 % accuracy on a test set. We also implement a dual stacked recurrent neural network (RNN) with long short-term memory (LSTM) cells capable of learning the latency, or cost, associated with these service requests. We create a simulation in JAMScript using a dataset of real-world vehicle movements to create a dataset to train these networks. We further propose the use of this predictive system in a smarter request routing mechanism to minimize the service interruption during handovers between fog nodes and to anticipate areas of low coverage through a series of experiments and test the models' performance on a test set.


翻译:智能移动管理将是未来雾计算系统的重要先决条件。 在这一研究中,我们提议对车辆互联网进行基于学习的交接优化,以帮助设备连接和雾节点之间卸载任务的顺利过渡。 为了实现这一点,我们利用机器学习算法从与雾节点的车辆互动中学习。我们的方法是使用三层进化前神经网络来预测某个特定地点和时间的正确雾节点,测试集的精确度为99.2%。我们还实施一个双堆叠的经常性神经网络(RNNN),具有长期短期内存(LSTM)细胞,能够学习与这些服务请求相关的长期内存或成本。我们在JAMScript创建了一个模拟,使用真实世界车辆移动的数据集来建立一个数据集来培训这些网络。我们进一步提议在更明智的请求路由机制中使用这一预测系统,以尽量减少雾节点之间交接期间的服务中断,并通过一系列实验和测试模型在测试集上的表现来预测低覆盖区。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
18+阅读 · 2019年1月16日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
3+阅读 · 2018年3月28日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
相关论文
Top
微信扫码咨询专知VIP会员