Smart mobility management would be an important prerequisite for future fog computing systems. In this research, we propose a learning-based handover optimization for the Internet of Vehicles that would assist the smooth transition of device connections and offloaded tasks between fog nodes. To accomplish this, we make use of machine learning algorithms to learn from vehicle interactions with fog nodes. Our approach uses a three-layer feed-forward neural network to predict the correct fog node at a given location and time with 99.2 % accuracy on a test set. We also implement a dual stacked recurrent neural network (RNN) with long short-term memory (LSTM) cells capable of learning the latency, or cost, associated with these service requests. We create a simulation in JAMScript using a dataset of real-world vehicle movements to create a dataset to train these networks. We further propose the use of this predictive system in a smarter request routing mechanism to minimize the service interruption during handovers between fog nodes and to anticipate areas of low coverage through a series of experiments and test the models' performance on a test set.
翻译:智能移动管理将是未来雾计算系统的重要先决条件。 在这一研究中,我们提议对车辆互联网进行基于学习的交接优化,以帮助设备连接和雾节点之间卸载任务的顺利过渡。 为了实现这一点,我们利用机器学习算法从与雾节点的车辆互动中学习。我们的方法是使用三层进化前神经网络来预测某个特定地点和时间的正确雾节点,测试集的精确度为99.2%。我们还实施一个双堆叠的经常性神经网络(RNNN),具有长期短期内存(LSTM)细胞,能够学习与这些服务请求相关的长期内存或成本。我们在JAMScript创建了一个模拟,使用真实世界车辆移动的数据集来建立一个数据集来培训这些网络。我们进一步提议在更明智的请求路由机制中使用这一预测系统,以尽量减少雾节点之间交接期间的服务中断,并通过一系列实验和测试模型在测试集上的表现来预测低覆盖区。