In this paper, we study the problem of class imbalance in semantic segmentation. We first investigate and identify the main challenges of addressing this issue through pixel rebalance. Then a simple and yet effective region rebalance scheme is derived based on our analysis. In our solution, pixel features belonging to the same class are grouped into region features, and a rebalanced region classifier is applied via an auxiliary region rebalance branch during training. To verify the flexibility and effectiveness of our method, we apply the region rebalance module into various semantic segmentation methods, such as Deeplabv3+, OCRNet, and Swin. Our strategy achieves consistent improvement on the challenging ADE20K and COCO-Stuff benchmark. In particular, with the proposed region rebalance scheme, state-of-the-art BEiT receives +0.7% gain in terms of mIoU on the ADE20K val set.
翻译:在本文中,我们研究语系分离中的阶级不平衡问题。 我们首先调查并找出通过像素再平衡来解决这一问题的主要挑战。 然后根据我们的分析得出一个简单而有效的区域再平衡计划。 在我们的解决方案中,同一类的像素特征按区域特征分类,在培训期间通过一个辅助区域再平衡分支进行区域再平衡分类。 为了验证我们的方法的灵活性和有效性,我们将区域再平衡模块应用到各种语系分离方法中,例如Deeplabv3+、OCRNet和Swin。 我们的战略在具有挑战性的ADE20K和CO-Stuff基准上取得了一致的改进。 特别是,在拟议的地区再平衡计划下,最先进的BeiT在ADE20K val 设置的MIOU中获得了+0.7 %的收益。