We show that for any non-real algebraic number $q$ such that $|q-1|>1$ or $\Re(q)>\frac{3}{2}$ it is \textsc{\#P}-hard to compute a multiplicative (resp. additive) approximation to the absolute value (resp. argument) of the chromatic polynomial evaluated at $q$ on planar graphs. This implies \textsc{\#P}-hardness for all non-real algebraic $q$ on the family of all graphs. We moreover prove several hardness results for $q$ such that $|q-1|\leq 1$. Our hardness results are obtained by showing that a polynomial time algorithm for approximately computing the chromatic polynomial of a planar graph at non-real algebraic $q$ (satisfying some properties) leads to a polynomial time algorithm for \emph{exactly} computing it, which is known to be hard by a result of Vertigan. Many of our results extend in fact to the more general partition function of the random cluster model, a well known reparametrization of the Tutte polynomial.
翻译:我们显示,对于任何非真实的变色体数美元, 也就是说, $q-1 $1 $ 或$\ re(q) {frac{3 ⁇ 2} $, 或$\ textsc ⁇ {{3 ⁇ 2} 美元, 计算一个倍数( resp) 近似于在平面图上以 $ 计价的彩色多元图的绝对值( resp. 参数) 是很难的。 这意味着, 在所有图表的家族中, 所有非真实的变相$ $ - 硬度 或$\ re( q) $( q) $( q)\\\ {frac{ $) 。 此外, 我们还证明, $@ q-1 { { leq1} 美元有几种硬度结果。 我们的硬度结果是通过显示一个多数值算法 来大致计算非真实的平面平面图的彩色多色数( $qu) 。 这意味着, 某些属性导致一个非真实的计算多色时间算法 。 。