We investigate the solution landscapes of the Onsager free-energy functional with different potential kernels, including the dipolar potential, the Maier--Saupe potential, the coupled dipolar/Maier--Saupe potential, and the Onsager potential. A uniform sampling method is implemented for the discretization of the Onsager functional, and the solution landscape of the Onsager functional is constructed by using the saddle dynamics coupled with downward/upward search algorithms. We first compute the solution landscapes with the dipolar and Maier--Saupe potentials, for which all critical points are axisymmetric. For the coupled dipolar/Maier--Saupe potential, the solution landscape shows a novel non-axisymmetric critical point, named as tennis, which exists for a wide range of parameters. We further demonstrate various non-axisymmetric critical points in the Onsager functional with the Onsager potential, including square, hexagon, octahedral, cubic, quarter, icosahedral, and dodecahedral states. The solution landscape provides an efficient approach to show the global structures as well as the bifurcations of critical points, which can not only verify the previous analytic results but also propose several conjectures based on the numerical findings.


翻译:我们调查了Onsager自由能源功能中具有不同潜在内核的解决方案景观,包括双极潜力、Maier-Saupe潜力、双极/Maier-Saupe潜力和Onsager潜力。为了将Onssager功能分解,我们采用了统一的取样方法,而Onsager功能的解决方案景观是通过使用马鞍动力以及下/上向搜索算法来构建的。我们首先用双极和Maier-Saupe潜力来计算解决方案景观,所有关键点都是轴线。对于双极/Maier-Saupe潜力和Onsager-Saupe潜力,解决方案前景展示了一种新型的非xymy度关键点,称为网球,在一系列参数上都存在。我们进一步展示了Onsager功能中各种非xy度临界点,在Onsager潜力中包括正方形、六边形、八面、立方形、横角、正形、正面、正面、正面、正面和弯形两面,也是以两面为主形结构结构的解决方案结构的解决方案结构,并且作为前两个关键的、以前两面的两面的两面的两面的校方的校方的校方根的校方,还作为基础的校方的校方的校方的校方的校方根根根根根根根根根根根根根根根根根根根根根根根根根根根的解决方案,作为,也显示了根根根根根根根根根根根根根根根根根根根根根根根根根根的解决方案,作为根据的根根根根根根根根根根根根的解决方案,作为基于的根的解决方案,作为基于的根根的根的根根根根根根根根根根根根根根根根根的根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根根

0
下载
关闭预览

相关内容

【干货书】机器人元素Elements of Robotics ,311页pdf
专知会员服务
34+阅读 · 2021年4月16日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年5月6日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月8日
Arxiv
0+阅读 · 2021年6月8日
Arxiv
0+阅读 · 2021年6月3日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年5月6日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员