Subset selection is an important component in evolutionary multiobjective optimization (EMO) algorithms. Clustering, as a classic method to group similar data points together, has been used for subset selection in some fields. However, clustering-based methods have not been evaluated in the context of subset selection from solution sets obtained by EMO algorithms. In this paper, we first review some classic clustering algorithms. We also point out that another popular subset selection method, i.e., inverted generational distance (IGD)-based subset selection, can be viewed as clustering. Then, we perform a comprehensive experimental study to evaluate the performance of various clustering algorithms in different scenarios. Experimental results are analyzed in detail, and some suggestions about the use of clustering algorithms for subset selection are derived. Additionally, we demonstrate that decision maker's preference can be introduced to clustering-based subset selection.
翻译:子集选择是进化多目标优化算法的一个重要组成部分。 在某些字段中,分组作为将类似数据点集中在一起的经典方法,已经在某些字段中用于子集选择。 但是, 群集方法尚未在从 EMO 算法获得的成套解决方案中进行子集选择的背景下进行评估。 在本文中, 我们首先审查一些典型的群集算法。 我们还指出, 另一种受欢迎的子集选择法, 即倒转代代间距离( IGD) 子集选择, 可以被视为集群。 然后, 我们进行全面的实验研究, 评估不同情景中各种组合算法的性能。 实验结果经过详细分析, 并得出关于子集选择使用群集算法的一些建议。 此外, 我们证明决策者的偏好可以引入基于集子集的子集选择 。