Reactive motion generation problems are usually solved by computing actions as a sum of policies. However, these policies are independent of each other and thus, they can have conflicting behaviors when summing their contributions together. We introduce Composable Energy Policies (CEP), a novel framework for modular reactive motion generation. CEP computes the control action by optimization over the product of a set of stochastic policies. This product of policies will provide a high probability to those actions that satisfy all the components and low probability to the others. Optimizing over the product of the policies avoids the detrimental effect of conflicting behaviors between policies choosing an action that satisfies all the objectives. Besides, we show that CEP naturally adapts to the Reinforcement Learning problem allowing us to integrate, in a hierarchical fashion, any distribution as prior, from multimodal distributions to non-smooth distributions and learn a new policy given them.


翻译:动态运动生成问题通常通过计算行动作为政策的总和来解决。然而,这些政策彼此独立,因此,在将它们的贡献相提并论时,它们可能会有相互冲突的行为。我们引入了复合能源政策(CEP),这是模块化反应动作生成的新框架。CEP通过优化一套随机政策的产物来计算控制行动。这一政策产物将为那些满足所有组成部分和低概率的动作提供很大的可能性。优化政策产品避免了政策选择满足所有目标的行动之间相互冲突的行为的有害影响。此外,我们表明,CEP自然会适应强化学习问题,使我们能够以等级化的方式整合从多式联运分配到非移动分布的任何分配,并学习给予它们的新政策。

0
下载
关闭预览

相关内容

CEP是一种比较新的企业架构(EA,Enterprise Architure)组件。CEP将数据看做一种数据流,基于规则引擎对业务过程中持续产生的各种事件进行复杂的处理,能够实现对连续数据的快速分析处理。可以应用在多种业务场景,如风险分析、程序化交易等。
【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
24+阅读 · 2021年1月26日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
7+阅读 · 2019年3月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2020年6月16日
VIP会员
相关VIP内容
【UBC】高级机器学习课程,Advanced Machine Learning
专知会员服务
24+阅读 · 2021年1月26日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
7+阅读 · 2019年3月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员