Efficient on-device neural network (NN) inference offers predictable latency, improved privacy and reliability, and lower operating costs for vendors than cloud-based inference. This has sparked recent development of microcontroller-scale NN accelerators, also known as neural processing units ($\mu$NPUs), designed specifically for ultra-low-power applications. We present the first comparative evaluation of a number of commercially-available $\mu$NPUs, including the first independent benchmarks for multiple platforms. To ensure fairness, we develop and open-source a model compilation pipeline supporting consistent benchmarking of quantized models across diverse microcontroller hardware. Our resulting analysis uncovers both expected performance trends as well as surprising disparities between hardware specifications and actual performance, including certain $\mu$NPUs exhibiting unexpected scaling behaviors with model complexity. This work provides a foundation for ongoing evaluation of $\mu$NPU platforms, alongside offering practical insights for both hardware and software developers in this rapidly evolving space.


翻译:与基于云端的推理相比,高效的设备端神经网络推理为供应商提供了可预测的延迟、更强的隐私保护与可靠性,以及更低的运营成本。这推动了近期微控制器级神经网络加速器(亦称为神经处理单元μNPU)的发展,其专为超低功耗应用而设计。本文首次对多款商用μNPU进行了比较性评估,并提供了多个平台的首次独立基准测试。为确保公平性,我们开发并开源了一个模型编译流水线,支持在不同微控制器硬件上对量化模型进行一致的基准测试。我们的分析结果既揭示了预期的性能趋势,也发现了硬件规格与实际性能之间的显著差异,包括某些μNPU在模型复杂度增加时表现出意料之外的扩展行为。本研究为持续评估μNPU平台奠定了基础,同时为这一快速发展领域的硬件和软件开发者提供了实用的见解。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2020年1月27日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员