The proliferation of robot-assisted minimally invasive surgery highlights the need for advanced training tools such as cost-effective robotic endotrainers. Current surgical robots often lack haptic feedback, which is crucial for providing surgeons with a real-time sense of touch. This absence can impact the surgeon's ability to perform delicate operations effectively. To enhance surgical training and address this deficiency, we have integrated a cost-effective haptic feedback system into a robotic endotrainer. This system incorporates both kinesthetic (force) and tactile feedback, improving the fidelity of surgical simulations and enabling more precise control during operations. Our system incorporates an innovative, cost-effective Force/Torque sensor utilizing optoelectronic technology, specifically designed to accurately detect forces and moments exerted on surgical tools with a 95% accuracy, providing essential kinesthetic feedback. Additionally, we implemented a tactile feedback mechanism that informs the surgeon of the gripping forces between the tool's tip and the tissue. This dual feedback system enhances the fidelity of training simulations and the execution of robotic surgeries, promoting broader adoption and safer practices.
翻译:暂无翻译