The knowledge that an intelligent and autonomous mobile robot has and is able to acquire of itself and the environment, namely the situation, limits its reasoning, decision-making, and execution skills to efficiently and safely perform complex missions. Situational awareness is a basic capability of humans that has been deeply studied in fields like Psychology, Military, Aerospace, Education, etc., but it has barely been considered in robotics, which has focused on ideas such as sensing, perception, sensor fusion, state estimation, localization and mapping, spatial AI, etc. In our research, we connected the broad multidisciplinary existing knowledge on situational awareness with its counterpart in mobile robotics. In this paper, we survey the state-of-the-art robotics algorithms, we analyze the situational awareness aspects that have been covered by them, and we discuss their missing points. We found out that the existing robotics algorithms are still missing manifold important aspects of situational awareness. As a consequence, we conclude that these missing features are limiting the performance of robotic situational awareness, and further research is needed to overcome this challenge. We see this as an opportunity, and provide our vision for future research on robotic situational awareness.


翻译:一个智能和自主的移动机器人拥有并且能够获取自身和环境的知识,即情况、限制其推理、决策和执行技能,以高效和安全地执行复杂任务。情况意识是人类的基本能力,在心理学、军事、航空、航空、教育等领域已经深入研究过,但在机器人中却很少考虑到这种能力,机器人侧重于感知、感知、感知聚合、国家估计、地方化和绘图、空间AI等思想。在我们的研究中,我们把关于情况认识的广泛多学科现有知识与移动机器人的对应知识联系起来。我们本文将这一知识视为一个机会,我们分析了最新机器人算法,我们分析了他们所覆盖的情况意识方面,并讨论了他们缺失的要点。我们发现,现有的机器人算法仍然缺乏对情况认识的多方面重要方面。因此,我们得出结论,这些缺失的特征正在限制机器人对情况的认识,需要进一步研究来克服这一挑战。我们将此视为一个机会,并为今后对机器人状况认识的研究提供愿景。

1
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
86+阅读 · 2019年12月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Arxiv
7+阅读 · 2021年8月25日
Arxiv
103+阅读 · 2021年6月8日
Arxiv
9+阅读 · 2021年3月25日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
86+阅读 · 2019年12月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
相关论文
Top
微信扫码咨询专知VIP会员