We develop a new theoretical framework, the \emph{envelope complexity}, to analyze the minimax regret with logarithmic loss functions and derive a Bayesian predictor that adaptively achieves the minimax regret over high-dimensional $\ell_1$-balls within a factor of two. The prior is newly derived for achieving the minimax regret and called the \emph{spike-and-tails~(ST) prior} as it looks like. The resulting regret bound is so simple that it is completely determined with the smoothness of the loss function and the radius of the balls except with logarithmic factors, and it has a generalized form of existing regret/risk bounds. In the preliminary experiment, we confirm that the ST prior outperforms the conventional minimax-regret prior under non-high-dimensional asymptotics.
翻译:我们开发了一个新的理论框架, 即 \ emph{ envelope complicate}, 以分析对数损失功能的微负负遗憾, 并得出一个贝叶斯预测器, 该预测器在高维 $\ ell_ 1$ 1$- ball 上, 以适应方式在两个系数内实现微负遗憾。 前者是新产生的, 以达到微负遗憾, 并按其外观命名 。 由此产生的后悔约束非常简单, 以至于它完全取决于除对数因素外的损失函数和球的半径的平滑性, 并且它具有一种普遍的现存遗憾/ 风险界限形式。 在初步实验中, 我们确认前ST 超越了在非高维的反射器下之前的常规微负负矩。