We consider the variational problem of cross-entropy loss with $n$ feature vectors on a unit hypersphere in $\mathbb{R}^d$. We prove that when $d \geq n - 1$, the global minimum is given by the simplex equiangular tight frame, which justifies the neural collapse behavior. We also prove that as $n \rightarrow \infty$ with fixed $d$, the minimizing points will distribute uniformly on the hypersphere and show a connection with the frame potential of Benedetto & Fickus.
翻译:我们考虑的是单位超视距上以$\mathbb{R ⁇ {R ⁇ d$计算的单位特质矢量上以美元为单位的跨热带损失的变异问题。我们证明,当$d\geq n - 1$时,全球最低限由简单x等角紧身框架给出,这为神经崩溃行为提供了理由。我们还证明,以固定美元为单位,以美元为一元为单位特质矢量,最小值将统一分布在超视距上,并显示与Benedetto & Fickus框架潜力的关联。