Recently, Savar\'{e}-Toscani proved that the R\'{e}nyi entropy power of general probability densities solving the $p$-nonlinear heat equation in $\mathbb{R}^n$ is always a concave function of time, which extends Costa's concavity inequality for Shannon's entropy power to R\'{e}nyi entropies. In this paper, we give a generalization of Savar\'{e}-Toscani's result by giving a class of sufficient conditions of the parameters under which the concavity of the R\'{e}nyi entropy power is still valid. These conditions are quite general and include the parameter range given by Savar\'{e}-Toscani as special cases. Also, the conditions are obtained with a systematical approach.
翻译:最近,Savar\'{e}-Toscani证明,用$\mathb{R}n$解决美元-非线性热方程式的一般概率密度的R\'{e}nyi entropy entrapy entrapy entrapy power at $\ mathb{R}}n$(美元)总是一个时间的混凝土函数,它把科斯塔对香农的诱导力的混凝土不平等扩大到 R\'{e}ny entropy 。在本文中,我们通过对Savar\'{{{e}-Toscani 的结果进行概括化,对R\'e}ny entropy entrapy 的精密性仍然有效的参数给出了一定的足够条件。这些条件相当笼统,包括Savar\>{e}-Toscani作为特例提供的参数范围。此外,这些条件是以系统的方法获得的。