Texturing is a fundamental process in computer graphics. Texture is leveraged to enhance the visualization outcome for a 3D scene. In many cases a texture image cannot cover a large 3D model surface because of its small resolution. Conventional techniques like repeating, mirror repeating or clamp to edge do not yield visually acceptable results. Deep learning based texture synthesis has proven to be very effective in such cases. All deep texture synthesis methods trying to create larger resolution textures are limited in terms of GPU memory resources. In this paper, we propose a novel approach to example-based texture synthesis by using a robust deep learning process for creating tiles of arbitrary resolutions that resemble the structural components of an input texture. In this manner, our method is firstly much less memory limited owing to the fact that a new texture tile of small size is synthesized and merged with the original texture and secondly can easily produce missing parts of a large texture.


翻译:在计算机图形中, 纹理是一种基本过程。 纹理被利用来增强三维场景的可视化结果。 在许多情况下, 纹理图像由于分辨率小, 无法覆盖大型三维模型表面。 重复、 镜重复或夹在边缘等常规技术不会产生可视效果。 深学习的纹理合成在这类情况下证明非常有效。 所有试图创建更大分辨率纹理的深质合成方法在 GPU 内存资源方面都是有限的。 在本文中, 我们提出一种新的方法, 以实例为基础的纹理合成方法, 方法是利用强有力的深层次学习过程来创建任意分辨率的砖块, 类似输入纹理的结构组件 。 这样, 我们的方法首先会少得多的记忆力, 因为一个新的小纹理板被合成, 并且与原始纹理合并, 其次很容易产生大纹理缺失的部分 。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
37+阅读 · 2020年9月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
3+阅读 · 2019年6月5日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
4+阅读 · 2018年12月3日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
9+阅读 · 2018年4月20日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
11+阅读 · 2020年12月2日
Arxiv
3+阅读 · 2019年6月5日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
4+阅读 · 2018年12月3日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
9+阅读 · 2018年4月20日
Top
微信扫码咨询专知VIP会员