The emerging paradigm of the Social Internet of Things (SIoT) has transformed the traditional notion of the Internet of Things (IoT) into a social network of billions of interconnected smart objects by integrating social networking facets into the same. In SIoT, objects can establish social relationships in an autonomous manner and interact with the other objects in the network based on their social behaviour. A fundamental problem that needs attention is establishing of these relationships in a reliable and trusted way, i.e., establishing trustworthy relationships and building trust amongst objects. In addition, it is also indispensable to ascertain and predict an object's behaviour in the SIoT network over a period of time. Accordingly, in this paper, we have proposed an efficient time-aware machine learning-driven trust evaluation model to address this particular issue. The envisaged model deliberates social relationships in terms of friendship and community-interest, and further takes into consideration the working relationships and cooperativeness (object-object interactions) as trust parameters to quantify the trustworthiness of an object. Subsequently, in contrast to the traditional weighted sum heuristics, a machine learning-driven aggregation scheme is delineated to synthesize these trust parameters to ascertain a single trust score. The experimental results demonstrate that the proposed model can efficiently segregates the trustworthy and untrustworthy objects within a network, and further provides the insight on how the trust of an object varies with time along with depicting the effect of each trust parameter on a trust score.


翻译:社会物联网(SIoT)的新兴模式已经将传统的物联网概念(IoT)转化为由数十亿个相互关联的智能对象组成的社会网络。在SIoT, 目标可以自主地建立社会关系,并根据社会行为与网络中的其他对象进行互动。一个需要注意的根本问题是,以可靠和可信赖的方式建立这些关系,即建立可信赖的关系,并在目标之间建立信任。此外,还必须在一段时间内确定和预测一个物体在SIoT网络中的行为。因此,在本文件中,我们提出了一个高效的有时间意识的机器学习驱动的信任评价模式,以解决这一特定问题。设想的模式从友谊和社区利益的角度来探讨社会关系,并进一步考虑到工作关系和合作性(即建立可信赖性互动性),作为量化目标可信度的信任参数。随后,与传统的加权和超自然统计性相比,一个机器学习驱动的汇总模式将如何与这些信任参数综合起来,以便确定一个可靠的单一信任度的对比值。 设想的模式可以进一步展示一个不可靠的信任度的实验性标度。

0
下载
关闭预览

相关内容

Mac 平台下的最佳 GTD 软件之一.有 iOS 版本. culturedcode.com/things
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员