Hazy images reduce the visibility of the image content, and haze will lead to failure in handling subsequent computer vision tasks. In this paper, we address the problem of image dehazing by proposing a dehazing network named T-Net, which consists of a backbone network based on the U-Net architecture and a dual attention module. And it can achieve multi-scale feature fusion by using skip connections with a new fusion strategy. Furthermore, by repeatedly unfolding the plain T-Net, Stack T-Net is proposed to take advantage of the dependence of deep features across stages via a recursive strategy. In order to reduce network parameters, the intra-stage recursive computation of ResNet is adopted in our Stack T-Net. And we take both the stage-wise result and the original hazy image as input to each T-Net and finally output the prediction of clean image. Experimental results on both synthetic and real-world images demonstrate that our plain T-Net and the advanced Stack T-Net perform favorably against the state-of-the-art dehazing algorithms, and show that our Stack T-Net could further improve the dehazing effect, demonstrating the effectiveness of the recursive strategy.
翻译:雾化图像会降低图像内容的可见度, 烟雾将导致无法处理随后的计算机视觉任务。 在本文中, 我们通过提出一个名为 TNet 的解层网络来解决图像解层问题, 这个网络由基于 U-Net 结构的骨干网络和一个双重关注模块组成。 它可以通过使用新的聚合战略的跳过连接实现多级特征融合。 此外, 通过反复展示平面 T- Net, Stack T- Net 提议通过循环战略利用不同阶段深层特征的依附性。 为了减少网络参数, 我们的Stack T- Net 采用了 ResNet 的阶段内循环计算 。 我们同时将阶段结果和原始遮蔽图像作为每个 T- Net 的输入, 最后输出对清洁图像的预测 。 合成图像和现实世界图像的实验结果显示, 我们的平面 T- Net 和高级 Stack T- Net 都对状态解析算法表现良好。 并显示, 我们的Stack T- Net 可以进一步改进解层战略的再现效果。