Capturing users' precise preferences is of great importance in various recommender systems (eg., e-commerce platforms), which is the basis of how to present personalized interesting product lists to individual users. In spite of significant progress has been made to consider relations between users and items, most of the existing recommendation techniques solely focus on singular type of user-item interactions. However, user-item interactive behavior is often exhibited with multi-type (e.g., page view, add-to-favorite and purchase) and inter-dependent in nature. The overlook of multiplex behavior relations can hardly recognize the multi-modal contextual signals across different types of interactions, which limit the feasibility of current recommendation methods. To tackle the above challenge, this work proposes a Memory-Augmented Transformer Networks (MATN), to enable the recommendation with multiplex behavioral relational information, and joint modeling of type-specific behavioral context and type-wise behavior inter-dependencies, in a fully automatic manner. In our MATN framework, we first develop a transformer-based multi-behavior relation encoder, to make the learned interaction representations be reflective of the cross-type behavior relations. Furthermore, a memory attention network is proposed to supercharge MATN capturing the contextual signals of different types of behavior into the category-specific latent embedding space. Finally, a cross-behavior aggregation component is introduced to promote the comprehensive collaboration across type-aware interaction behavior representations, and discriminate their inherent contributions in assisting recommendations. Extensive experiments on two benchmark datasets and a real-world e-commence user behavior data demonstrate significant improvements obtained by MATN over baselines. Codes are available at: https://github.com/akaxlh/MATN.


翻译:在各种建议系统(例如,电子商务平台)中,用户的准确偏好非常重要,这种建议系统是如何向个人用户提供个性化有趣产品清单的基础。尽管在考虑用户和项目之间的关系方面取得了重大进展,但大多数现有建议技术仅侧重于用户-项目互动的单一类型。然而,用户-项目互动行为往往以多种类型(如页面视图、增加至爱好和购买)和相互依存的性质来展示。多式行为关系的忽视几乎无法识别不同类型互动的多式背景信号,这限制了当前建议方法的可行性。为了应对上述挑战,这项工作提议采用记忆-增强型变换网络(MATN),使建议能够使用多式行为关系代码信息,并以完全自动的方式对特定类型的行为背景和类型间行为进行联合建模。在我们的MATN框架内,我们首先开发了一个基于变异式多式电子传动关系,这限制了当前建议方法的可行性。为了让所学的用户-增强型变式变型变型变型变型的变型变型变型变型变型变型变型变型变型变型变型变型变型变型变型变型变型变型变型数据变型数据变型数据变型数据变型数据转换式模型变型变型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型式变型模型变型模型变型式变型式变型式变型式变型式式式变型模型变型号,将模型变型模型,将模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型变型模型式模型变型模型变型模型变型模型变型模型变型模型变型模型变型式式式式模型变型模型变型模型变型模型变型模型式模型式模型变型模型变型模型变型模型式模型式模型变型模型式模型式模型式模型变型模型式模型式模型式模型变型模型变型模型式模型变型模型变型模型变型模型式

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【NUS-Xavier教授】注意力神经网络,79页ppt
专知会员服务
62+阅读 · 2021年11月25日
【KDD2020教程】多模态网络表示学习
专知会员服务
129+阅读 · 2020年8月26日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
必读的7篇IJCAI 2019【图神经网络(GNN)】相关论文-Part2
专知会员服务
60+阅读 · 2020年1月10日
CIKM2020推荐系统论文集合
机器学习与推荐算法
10+阅读 · 2020年10月13日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
20+阅读 · 2019年11月23日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
7+阅读 · 2018年11月29日
VIP会员
Top
微信扫码咨询专知VIP会员