Combinatorial optimization on near-term quantum devices is a promising path to demonstrating quantum advantage. However, the capabilities of these devices are constrained by high noise or error rates. In this paper, we propose an iterative Layer VQE (L-VQE) approach, inspired by the Variational Quantum Eigensolver (VQE). We present a large-scale numerical study, simulating circuits with up to 40 qubits and 352 parameters, that demonstrates the potential of the proposed approach. We evaluate quantum optimization heuristics on the problem of detecting multiple communities in networks, for which we introduce a novel qubit-frugal formulation. We numerically compare L-VQE with Quantum Approximate Optimization Algorithm (QAOA) and demonstrate that QAOA achieves lower approximation ratios while requiring significantly deeper circuits. We show that L-VQE is more robust to finite sampling errors and has a higher chance of finding the solution as compared with standard VQE approaches. Our simulation results show that L-VQE performs well under realistic hardware noise.
翻译:短期量子装置的组合优化是展示量子优势的一条有希望的道路。然而,这些装置的能力受到高噪音或错误率的制约。在本文件中,我们提议了一种迭代层VQE (L-VQE) 方法,该方法受量子装置量子优化的启发。我们提出了一个大规模的数字研究,模拟了高达40平方和352参数的电路,展示了拟议方法的潜力。我们评估了在网络中探测多个社区的问题的量子优化超常性,为此我们采用了新型的qubit-froducal配方。我们用数字比较了L-VQE与Quantum Aphimizal Agorithm (QAOA) 的方法,并证明QAOA的近似率较低,同时需要大大加深的电路路段。我们显示,L-VQE比标准的VQE方法更坚固,并更有可能找到解决办法。我们的模拟结果表明,L-VQE在现实的硬件下运行良好。